Embedded-KI: Ein Markt mit großem Wachstumspotenzial

pressemitteilung-marktpotenzial

Wie Unternehmen aus den Bereichen Verbraucher, Medizin, Automotive/Mobilität, Produktion/Industrie/Maschinenbau beim Produktdesign von KI-Integration in der Elektronik profitieren

Offenburg, den 25. April 2022 -- Künstliche Intelligenz (KI) ist ein Schlagwort und eine mittlerweile fast unübersichtliche Welt. Gerade mittelständische Unternehmen stehen vor der Herausforderung, rechtzeitig entsprechende Lösungen zu finden oder Ressourcen zu schaffen und Knowhow zu entwickeln. Die Herausforderung beginnt aber schon früher: Vom Produktmanagement bis zur Forschung und Entwicklung müssen alle wissen, wie ein nutzenorientierter Innovationsprozess mit KI abläuft und was dies im kurz- bis zum langfristigen Produktzyklus bedeutet.

Embedded-KI in Ihrem Produkt?

Als Embedded-KI werden Elektroniksysteme bezeichnet, in denen KI autark und lokal wirkt. Das Marktpotenzial ist enorm - mitverursacht durch Mitläufertrends wie (I)IoT, entsprechende Connectivity, Security und Cloud Services. Allied Analytics schätzt den KI-Halbleitermarkt im Jahre 2030 auf über 190 Mrd. US-Dollar Volumen. Zum Vergleich: das Wachstum des AI-as-a-service-(Cloud-)Marktes wird auf fast 44 Mrd. US-Dollar im gleichen Zeitraum geschätzt.

In der Praxis lässt sich Embedded-KI in drei wesentliche Einsatzgruppen aufteilen: funktionale Innovationen, User Interaction und Predictive/Preventive Maintenance. Ersteres ermöglicht neuartige Funktionen, die den Zielnutzen eines Produkts oder Prozesses optimieren oder gar verändern. Als zusätzliches, sich daraus ergebendes Feld wird User Interaction ausgelagert. Diese erstreckt sich von einfacher Sprach-Befehlseingabe (d.h. KWS, Keyword Spotting) über Gestenerkennung bis hin zu komplexeren Mensch-Maschine-Kollaborationen wie Bedienertracking, Augentracking oder Werkstückerfassung. Als wohl größte „hidden needs“ vieler Produkthersteller sind aktuell die typischen Wartungsthemen wie die vorausschauende Wartung oder vorbeugende Wartung anzusehen, die über einfaches Condition Monitoring hinausgehen und wirklich frühzeitige und intelligente Vorhersagen über konkrete Fehlerbilder liefern.

Vielfältige Einsatzgebiete

Embedded-KI ist erst am Anfang seines Entfaltungspotenzials, sodass dies im aktuellen Stadium jedem Produkt einen Unique Selling Point (USP) verpasst. Wichtig ist jedoch stets, dass Einsatz und Nutzen für den Hersteller und Anwender miteinander in Einklang sind. Dabei schafft Embedded-KI vor allem in den Bereichen Maschinenbau, Medizin, Consumer, Automotive sowie in der Produktion und Herstellung Verbesserungen, erschafft neuartige Funktionen und kann sogar Leben und Umwelt retten.

Beispiele von Embedded-KI-Innovationen

Verbraucher:

  • ein Herd, der dafür sorgt, das Speisen optimal gekocht werden.
  • eine Zahnbürste, die den Zahnstatus erkennt und den Nutzer frühzeitig darüber informiert.
  • ein Raumfilter, der automatisch den Betrieb flexibel anpasst, je nachdem, ob das Fenster geöffnet ist.
  • eine Waschmaschine, die je nach Beladung und Verschleiß („Gesundheitszustand“) effizienter wäscht oder selbstständig den Service ruft.

Medizin:

  • Therapie- und OP-Geräte, die ohne eine Hilfsschwester vom Operateur direkt per Sprache gesteuert werden.
  • Raumbeleuchtungen, die sich je nach OP-Phase dank Bilderkennung der Operationsstelle automatisch mit Lichtstärke und -art anpassen.
  • Schnarch-Therapiegeräte, die Anomalien bei Verrohrung durch redundante kalorimetrische Sensoren erkennen und auf Leck oder sich verändernde Atemintensität hinweisen.

Automotive/Mobilität:

  • eine Seilbahn, deren Werbeschirme sich je nach Insassen-Sprache anpassen und die Personenzahl zwecks Auslastung sowie Seilschwingung zwecks Sicherheit des Systems erkennt.
  • Hinderniserkennungen bei FTS durch Lidar-Technik mit Trajektorienvorschlag (z.B. Rad durch einen Stein blockiert).
  • eine Turbine, die sich automatisch an die Ökokerosin-Beimischungen zwecks längerer Lebensdauer anpasst.

Produktion/Industrie/Maschinenbau:

  • ein industrieller Akkuschrauber, der sich je nach Drehmomentflanken und Beschleunigung an die Schraubenart bzw. das eigesetzte Werkzeugbit anpasst.
  • eine Transportanlage, die anhand des Bandflatterns rechtzeitig vor Produktionsstillstand der gesamten Anlage warnt.
  • eine Spritzgussmaschine, die in Echtzeit nach Druck- und Temperaturdaten den Prozess zwecks eines einwandfreien Ergebnisses anpasst.
  • eine Metall-Trennanlage, die beim akustischen „Notaus“-Ruf des Bedieners aus Sicherheitsgründen abschaltet.

„Diese Entwicklungen und noch viele mehr, sind heute bereits umsetzbar oder im Feld. Die meisten Unternehmen wissen oft gar nicht, was in ihren Produkten für Möglichkeiten stecken.“ erklärt Viacheslav Gromov, Geschäftsführer des Embedded-KI-Anbieters AITAD. „Wir haben ein Labor, in denen wir mit modernster Technik Daten sammeln, aber auch in wenigen Stunden Hardware produzieren und für die Serie testen können. Von der Vielzahl der Möglichkeiten, Embedded-KI zu integrieren, sind die meisten unserer Kunden sichtlich überrascht. In den Kunden-Prototypen kommen aber nur die Komponenten, die den größtmöglichen Nutzen für den Kunden und Anwender haben. Der Embedded-KI-Markt ist teilweise noch sehr undurchsichtig. Hier braucht es definitiv noch mehr Aufklärungsbedarf – vom Management bis hin zu den Entwicklern.“

Die Vorteile von Embedded-KI

Cloud-KI allein ist nur ein Übergang, die Zukunft liegt bei dezentraler Verarbeitung, ist sich Gromov sicher: „Wir arbeiten am Sensor auf der Platine mit derart großen Datenmengen, dass wir sie gar nicht weiter übertragen könnten. Die KI muss sie direkt vor Ort weiterverarbeiten und verwerfen, um die gewollten, tiefgehenden Zusammenhänge aufzuspüren.“

Mit Embedded-KI wird die lokale Verarbeitung großer Datenmengen ermöglicht, sodass das Risiko des Abfangens oder Manipulieren von sensiblen Daten verringert wird. Das führt zu einer höheren Daten- und Systemsicherheit. Ein Gerät muss keine performante Netzwerkinfrastruktur vorhalten, um Daten verarbeiten zu können. Somit ist eine geringere Konnektivität erforderlich, was die Produktionskosten reduziert. Embedded-KI lebt auf beschränkten Ressourcen, was Stromversorgung (auch Batteriebetrieb), Rechen- und Speicherleistung angeht. Solche Komponenten erfassen und verarbeiten die Daten sofort, und können darauf in Millisekunden reagieren, was bei vielen Anwendungen ein Muss ist. Ebenso kann das Gerät Daten in Echtzeit analysieren und überträgt nur das, was für die weitere Analyse in der Cloud relevant ist (Stichwort: Datenmengen reduzieren).

Dazu Gromov: „Embedded-KI – von Edge-AI zu unterscheiden – ist ein „Game Changer“ und eine junge Technologie, die für Erstnutzer branchenweite USPs schafft. Die Unternehmen müssen beim Produktdesign neu denken. Eine datengetriebene Entwicklung erfordert Langfristigkeit, mit einer für Optimierungen und Updates sowie Praxistests gerüsteter Organisation. Die effiziente Systemvalidierung geht bei solchen KIs auch nur mit Proof-of-Concepts.“

Worauf Unternehmen achten sollten

Der Embedded-KI-Markt ist noch weitgehend unbesetzt, wobei immer mehr Insellösungen oder niederschwellige Angebote hinzukommen. Spezifische Lösungen (oft auch closed-source) können im Einzelfall und wenn die Integration frühzeitig erfolgt, durchaus ein Gewinn fürs Unternehmen sein. Niederschwellige Softwareangebote verschiedenster Halbleiterhersteller oder eher übergreifende Tools wie „Edge Impulse“ oder „NanoEdge AI“ sind ein Fluch und Segen zugleich: Sie kommen schnell zum Ergebnis (auch teilweise dank AutoML-Funktionalität, also automatisiertem Modell-Erstellungsprozess), die gesamte vom Verständnis des jeweiligen Entwicklers abhängige Entwicklungskette ist jedoch eingeschränkt.

Die Halbleiterindustrie bietet auch eine Reihe von immer höher auf Embedded-KI-Use-Cases wie z.B. der Bildverarbeitung zugeschnittenen Chips, die immer performanter und angepasster sind. Auch AITAD beteiligt sich an einigen Forschungsprogrammen und fördert diesen disruptiven Trend der Grundlagenforschung. Doch auch diese Diversifizierung des Hardwaremarktes bringt Verwirrung mit sich.

„Wir empfehlen Unternehmen ganz klar einen Ansatz weg von fertigen Insellösungen. Diese können nur begrenzt auf die Bedürfnisse angepasst werden, mit kleineren oder größeren Abstrichen. Individuelle Systemanfertigungen haben einen viel größeren Spielraum. Das heißt herauszufinden, welches KI-Modell ins Produkt passt, wie sie sich effektiv auf Hardware umsetzen lässt, dafür die entsprechenden Systemkomponenten anhand gesammelter und ausgewerteter Daten zu entwickeln, das Ganze anhand eines Prototyps umzusetzen und in Praxis zu testen. Das klingt am Anfang nach viel Aufwand. Wenn man sich aber anschaut, wie lange das Produkt auf dem Markt ist und welche Vorteile Unternehmen und Nutzer zum Beispiel auch gerade im Bereich Preventive/Predictive Maintenance davon haben, dann lohnt sich die Investition auf jeden Fall,“ so Gromov weiter.

Täglich ergibt sich ein ähnliches Bild bei der Produktentwicklung, meint Viacheslav Gromov: „Aufklärung, Ressourcen und Kompetenzen sind das eine. Darüber hinaus gibt es erfahrungsgemäß einige Stolpersteine: Die meisten Mittelständler scheitern bereits an Datenarten. Meistens werden Daten unüberlegt gesammelt – mit falschen Intervallen, Abtastraten, Auflösungen, mit falscher Sensorik oder am falschen Ort. Spätestens sind es aber die spezifischen Anforderungen außerhalb des Standardprozesses, die den Endpunkt der eigenen Entwicklung bedeuten. Probieren Unternehmen beispielsweise ein Machine-Learning-Modell mit DNNs (also sogenannten verzögerten neuronalen Netzen) mit den gängigen Frameworks zu implementieren, stoßen sie schnell an Grenzen. Das geht nur mit eigener Erfahrung und eigens angepassten, halbautomatisierten Werkzeugen.“

Quellenangaben:

Über AITAD

AITAD ist ein deutscher Embedded-KI-Anbieter. Das Unternehmen befasst sich mit der Entwicklung und Testung von KI-Elektroniksystemen, insbesondere in Verbindung mit maschinellem Lernen im Industriekontext (v.a. Systemkomponenten). Als Entwicklungspartner übernimmt AITAD den kompletten Prozess vom Datensammeln über die Entwicklung bis hin zur Lieferung der Systemkomponenten. Dadurch werden innovative Anpassungen des Produkts vorgenommen, ohne das Kompetenzen und nur wenige Ressourcen von Kundenseite notwendig sind. Der Fokus liegt dabei auf zukunftsbringenden, disruptiven, innovativen Anpassungen mit größtmöglichem Impact auf Strukturen und Produktstrategien. Die Spezialgebiete von AITAD sind Preventive/Predictive Maintenance, User Interaction und funktionale Innovationen. Dabei geht AITAD einen anderen Weg als viele Hersteller: Anstatt einer fertigen KI-Lösung wird für jeden Kunden ein individuelles System entwickelt. Hierfür prüft das Unternehmen im ersten Schritt wie Kundenprodukte vom KI-Einsatz profitieren, stellt die Vorteile und Möglichkeiten vor, entwickelt das System auf allen Ebenen, baut dank einer Prototyping-EMS-Strecke in-house einen Prototyp des neuen Systems auf Basis gesammelter Daten und steht bei der Serienanfertigung und Systempflege stets zur Seite. Dabei agiert AITAD als interdisziplinärer Full-Stack-Anbieter mit Bereichen Data Science, Maschinenbau sowie Embedded-Hard- und Software. Zudem forscht AITAD in- und extern an zahlreichen algorithmischen und halbleitertechnischen Grundlagen der KI-Technologie. Weitere Informationen: https://aitad.de

Weitere Pressemitteilungen

Ansprechpartner

Martina Gruhn

Gruhn PR

AITAD@martinagruhn.com
+49(0)152/21943260

Andreas Precht

Marketing

a.precht@aitad.de
+49(0)781/96710830